44 research outputs found

    Super-orbital re-entry in Australia - laboratory measurement, simulation and flight observation

    Get PDF
    There are large uncertainties in the aerothermodynamic modelling of super-orbital re-entry which impact the design of spacecraft thermal protection systems (TPS). Aspects of the thermal environment of super-orbital re-entry flows can be simulated in the laboratory using arc- and plasma jet facilities and these devices are regularly used for TPS certification work [5]. Another laboratory device which is capable of simulating certain critical features of both the aero and thermal environment of super-orbital re-entry is the expansion tube, and three such facilities have been operating at the University of Queensland in recent years[10]. Despite some success, wind tunnel tests do not achieve full simulation, however, a virtually complete physical simulation of particular re-entry conditions can be obtained from dedicated flight testing, and the Apollo era FIRE II flight experiment [2] is the premier example which still forms an important benchmark for modern simulations. Dedicated super-orbital flight testing is generally considered too expensive today, and there is a reluctance to incorporate substantial instrumentation for aerothermal diagnostics into existing missions since it may compromise primary mission objectives. An alternative approach to on-board flight measurements, with demonstrated success particularly in the ‘Stardust’ sample return mission, is remote observation of spectral emissions from the capsule and shock layer [8]. JAXA’s ‘Hayabusa’ sample return capsule provides a recent super-orbital reentry example through which we illustrate contributions in three areas: (1) physical simulation of super-orbital re-entry conditions in the laboratory; (2) computational simulation of such flows; and (3) remote acquisition of optical emissions from a super-orbital re entry event

    Knowledge-Based Collaborative Lean Manufacturing Management (KBCLMM) system

    Get PDF
    The objective of this research paper is to demonstrate the application of hybrid Knowledge-Based System, Gauging Absences of Pre-Requisites (GAP), and Analytic Hierarchy Process (AHP) approaches for selecting the improvement programs for Collaborative Lean Manufacturing Management (CLMM) System.In this research, a generic Knowledge-Based System is developed to measure the level of CLMM adoption in automotive manufacturers compared to the ideal system. Using the embedded GAP and AHP technique, the key lean manufacturing improvement programs can be prioritised by using both qualitative and quantitative criteria.The analysis covers the planning stage of the KBCLMM. The utilisation of the approach is demonstrated with an illustrative example

    Image-based visual servoing for the super-orbital re-entry of Hayabusa spacecraft

    Get PDF
    This paper presents an image-based visual servoing system that was used to track the atmospheric Earth re-entry of Hayabusa. The primary aim of this ground based tracking platform was to record the emission spectrum radiating from the superheated gas of the shock layer and the surface of the heat shield during re-entry. To the author's knowledge, this is the first time that a visual servoing system has successfully tracked a super-orbital re-entry of a spacecraft and recorded its pectral signature. Furthermore, we improved the system by including a simplified dynamic model for feed-forward control and demonstrate improved tracking performance on the International Space Station (ISS). We present comparisons between simulation and experimental results on different target trajectories including tracking results from Hayabusa and ISS. The required performance for tracking both spacecraft is demanding when combined with a narrow field of view (FOV). We also briefly discuss the preliminary results obtained from the spectroscopy of the Hayabusa's heat shield during re-entry

    HIFiRE re-entry observation using an image-based visual servoing system

    Get PDF
    This paper presents an image based visual servoing system that is intended to be used for tracking and obtaining scientific observations of the HIFiRE vehicles. The primary aim of this tracking platform is to acquire and track the thermal signature emitted from the surface of the vehicle during the re-entry phase of the mission using an infra-red camera. The implemented visual servoing scheme uses a classical image based approach to identify and track the target using visual kinematic control. The paper utilizes simulation and experimental results to show the tracking performance of the system using visual feedback. Discussions on current implementation and control techniques to further improve the performance of the system are also explored

    Visible and near IR observation of the Hayabusa re-entry: an image-based visual servoing approach

    No full text
    corecore